Metamath Proof Explorer


Theorem 3brtr3g

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997)

Ref Expression
Hypotheses 3brtr3g.1 φARB
3brtr3g.2 A=C
3brtr3g.3 B=D
Assertion 3brtr3g φCRD

Proof

Step Hyp Ref Expression
1 3brtr3g.1 φARB
2 3brtr3g.2 A=C
3 3brtr3g.3 B=D
4 2 3 breq12i ARBCRD
5 1 4 sylib φCRD