Metamath Proof Explorer


Theorem 3impexp

Description: Version of impexp for a triple conjunction. (Contributed by Alan Sare, 31-Dec-2011)

Ref Expression
Assertion 3impexp φψχθφψχθ

Proof

Step Hyp Ref Expression
1 id φψχθφψχθ
2 1 3expd φψχθφψχθ
3 id φψχθφψχθ
4 3 3impd φψχθφψχθ
5 2 4 impbii φψχθφψχθ