Metamath Proof Explorer


Theorem 3impexpbicom

Description: Version of 3impexp where in addition the consequent is commuted. (Contributed by Alan Sare, 31-Dec-2011)

Ref Expression
Assertion 3impexpbicom φψχθτφψχτθ

Proof

Step Hyp Ref Expression
1 bicom θττθ
2 imbi2 θττθφψχθτφψχτθ
3 2 biimpcd φψχθτθττθφψχτθ
4 1 3 mpi φψχθτφψχτθ
5 4 3expd φψχθτφψχτθ
6 3impexp φψχτθφψχτθ
7 6 biimpri φψχτθφψχτθ
8 7 1 syl6ibr φψχτθφψχθτ
9 5 8 impbii φψχθτφψχτθ