Metamath Proof Explorer


Theorem 3onn

Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion 3onn 3𝑜ω

Proof

Step Hyp Ref Expression
1 df-3o 3𝑜=suc2𝑜
2 2onn 2𝑜ω
3 peano2 2𝑜ωsuc2𝑜ω
4 2 3 ax-mp suc2𝑜ω
5 1 4 eqeltri 3𝑜ω