Metamath Proof Explorer


Theorem 3p2e5

Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion 3p2e5 3 + 2 = 5

Proof

Step Hyp Ref Expression
1 df-2 2 = 1 + 1
2 1 oveq2i 3 + 2 = 3 + 1 + 1
3 3cn 3
4 ax-1cn 1
5 3 4 4 addassi 3 + 1 + 1 = 3 + 1 + 1
6 2 5 eqtr4i 3 + 2 = 3 + 1 + 1
7 df-4 4 = 3 + 1
8 7 oveq1i 4 + 1 = 3 + 1 + 1
9 6 8 eqtr4i 3 + 2 = 4 + 1
10 df-5 5 = 4 + 1
11 9 10 eqtr4i 3 + 2 = 5