Metamath Proof Explorer


Theorem 4exdistrv

Description: Distribute two pairs of existential quantifiers (over disjoint variables) over a conjunction. For a version with fewer disjoint variable conditions but requiring more axioms, see ee4anv . (Contributed by BJ, 5-Jan-2023)

Ref Expression
Assertion 4exdistrv xzywφψxyφzwψ

Proof

Step Hyp Ref Expression
1 exdistrv ywφψyφwψ
2 1 2exbii xzywφψxzyφwψ
3 exdistrv xzyφwψxyφzwψ
4 2 3 bitri xzywφψxyφzwψ