Metamath Proof Explorer


Theorem abciffcbatnabciffncbai

Description: Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypothesis abciffcbatnabciffncbai.1 φψχχψφ
Assertion abciffcbatnabciffncbai ¬φψχ¬χψφ

Proof

Step Hyp Ref Expression
1 abciffcbatnabciffncbai.1 φψχχψφ
2 notbi φψχχψφ¬φψχ¬χψφ
3 2 biimpi φψχχψφ¬φψχ¬χψφ
4 1 3 ax-mp ¬φψχ¬χψφ
5 4 biimpi ¬φψχ¬χψφ