Description: not ( a -> ( b /\ c ) ) we can show: not a implies ( b /\ c ). (Contributed by Jarvin Udandy, 7-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nabctnabc.1 | ||
| Assertion | nabctnabc | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nabctnabc.1 | ||
| 2 | pm4.61 | ||
| 3 | 2 | biimpi | |
| 4 | 1 3 | ax-mp | |
| 5 | 4 | simpli | |
| 6 | 4 | simpri | |
| 7 | 5 6 | 2th | |
| 8 | bicom | ||
| 9 | 8 | biimpi | |
| 10 | 7 9 | ax-mp | |
| 11 | 10 | biimpi | |
| 12 | 11 | con3i | |
| 13 | 12 | notnotrd |