Metamath Proof Explorer


Theorem nabctnabc

Description: not ( a -> ( b /\ c ) ) we can show: not a implies ( b /\ c ). (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypothesis nabctnabc.1 ¬φψχ
Assertion nabctnabc ¬φψχ

Proof

Step Hyp Ref Expression
1 nabctnabc.1 ¬φψχ
2 pm4.61 ¬φψχφ¬ψχ
3 2 biimpi ¬φψχφ¬ψχ
4 1 3 ax-mp φ¬ψχ
5 4 simpli φ
6 4 simpri ¬ψχ
7 5 6 2th φ¬ψχ
8 bicom φ¬ψχ¬ψχφ
9 8 biimpi φ¬ψχ¬ψχφ
10 7 9 ax-mp ¬ψχφ
11 10 biimpi ¬ψχφ
12 11 con3i ¬φ¬¬ψχ
13 12 notnotrd ¬φψχ