| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nabctnabc.1 | 
							⊢ ¬  ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							pm4.61 | 
							⊢ ( ¬  ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  ↔  ( 𝜑  ∧  ¬  ( 𝜓  ∧  𝜒 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							biimpi | 
							⊢ ( ¬  ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( 𝜑  ∧  ¬  ( 𝜓  ∧  𝜒 ) ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							ax-mp | 
							⊢ ( 𝜑  ∧  ¬  ( 𝜓  ∧  𝜒 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							simpli | 
							⊢ 𝜑  | 
						
						
							| 6 | 
							
								4
							 | 
							simpri | 
							⊢ ¬  ( 𝜓  ∧  𝜒 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							2th | 
							⊢ ( 𝜑  ↔  ¬  ( 𝜓  ∧  𝜒 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							bicom | 
							⊢ ( ( 𝜑  ↔  ¬  ( 𝜓  ∧  𝜒 ) )  ↔  ( ¬  ( 𝜓  ∧  𝜒 )  ↔  𝜑 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							biimpi | 
							⊢ ( ( 𝜑  ↔  ¬  ( 𝜓  ∧  𝜒 ) )  →  ( ¬  ( 𝜓  ∧  𝜒 )  ↔  𝜑 ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							ax-mp | 
							⊢ ( ¬  ( 𝜓  ∧  𝜒 )  ↔  𝜑 )  | 
						
						
							| 11 | 
							
								10
							 | 
							biimpi | 
							⊢ ( ¬  ( 𝜓  ∧  𝜒 )  →  𝜑 )  | 
						
						
							| 12 | 
							
								11
							 | 
							con3i | 
							⊢ ( ¬  𝜑  →  ¬  ¬  ( 𝜓  ∧  𝜒 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							notnotrd | 
							⊢ ( ¬  𝜑  →  ( 𝜓  ∧  𝜒 ) )  |