Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Surreal Contributions
abtp
Next ⟩
ralopabb
Metamath Proof Explorer
Ascii
Unicode
Theorem
abtp
Description:
Condition for a class abstraction to be a triple.
(Contributed by
RP
, 25-Aug-2024)
Ref
Expression
Assertion
abtp
⊢
x
|
φ
=
X
Y
Z
↔
∀
x
φ
↔
x
=
X
∨
x
=
Y
∨
x
=
Z
Proof
Step
Hyp
Ref
Expression
1
dftp2
⊢
X
Y
Z
=
x
|
x
=
X
∨
x
=
Y
∨
x
=
Z
2
1
abeqabi
⊢
x
|
φ
=
X
Y
Z
↔
∀
x
φ
↔
x
=
X
∨
x
=
Y
∨
x
=
Z