Metamath Proof Explorer


Theorem abtp

Description: Condition for a class abstraction to be a triple. (Contributed by RP, 25-Aug-2024)

Ref Expression
Assertion abtp x|φ=XYZxφx=Xx=Yx=Z

Proof

Step Hyp Ref Expression
1 dftp2 XYZ=x|x=Xx=Yx=Z
2 1 abeqabi x|φ=XYZxφx=Xx=Yx=Z