Description: Condition for a class abstraction to be a triple. (Contributed by RP, 25-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abtp | |- ( { x | ph } = { X , Y , Z } <-> A. x ( ph <-> ( x = X \/ x = Y \/ x = Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftp2 | |- { X , Y , Z } = { x | ( x = X \/ x = Y \/ x = Z ) } |
|
| 2 | 1 | abeqabi | |- ( { x | ph } = { X , Y , Z } <-> A. x ( ph <-> ( x = X \/ x = Y \/ x = Z ) ) ) |