Metamath Proof Explorer


Theorem abeqabi

Description: Generalized condition for a class abstraction to be equal to some class. (Contributed by RP, 2-Sep-2024)

Ref Expression
Hypothesis abeqabi.a
|- A = { x | ps }
Assertion abeqabi
|- ( { x | ph } = A <-> A. x ( ph <-> ps ) )

Proof

Step Hyp Ref Expression
1 abeqabi.a
 |-  A = { x | ps }
2 1 eqeq2i
 |-  ( { x | ph } = A <-> { x | ph } = { x | ps } )
3 abbib
 |-  ( { x | ph } = { x | ps } <-> A. x ( ph <-> ps ) )
4 2 3 bitri
 |-  ( { x | ph } = A <-> A. x ( ph <-> ps ) )