Description: Generalized condition for a class abstraction to be equal to some class. (Contributed by RP, 2-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abeqabi.a | |- A = { x | ps } |
|
Assertion | abeqabi | |- ( { x | ph } = A <-> A. x ( ph <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqabi.a | |- A = { x | ps } |
|
2 | 1 | eqeq2i | |- ( { x | ph } = A <-> { x | ph } = { x | ps } ) |
3 | abbib | |- ( { x | ph } = { x | ps } <-> A. x ( ph <-> ps ) ) |
|
4 | 2 3 | bitri | |- ( { x | ph } = A <-> A. x ( ph <-> ps ) ) |