Description: Condition for a class abstraction to be a pair. (Contributed by RP, 25-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | abpr | |- ( { x | ph } = { Y , Z } <-> A. x ( ph <-> ( x = Y \/ x = Z ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpr2 | |- { Y , Z } = { x | ( x = Y \/ x = Z ) } |
|
2 | 1 | abeqabi | |- ( { x | ph } = { Y , Z } <-> A. x ( ph <-> ( x = Y \/ x = Z ) ) ) |