Description: Condition for a class abstraction to be a pair. (Contributed by RP, 25-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | abpr | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑌 , 𝑍 } ↔ ∀ 𝑥 ( 𝜑 ↔ ( 𝑥 = 𝑌 ∨ 𝑥 = 𝑍 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpr2 | ⊢ { 𝑌 , 𝑍 } = { 𝑥 ∣ ( 𝑥 = 𝑌 ∨ 𝑥 = 𝑍 ) } | |
2 | 1 | abeqabi | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑌 , 𝑍 } ↔ ∀ 𝑥 ( 𝜑 ↔ ( 𝑥 = 𝑌 ∨ 𝑥 = 𝑍 ) ) ) |