Metamath Proof Explorer


Theorem abpr

Description: Condition for a class abstraction to be a pair. (Contributed by RP, 25-Aug-2024)

Ref Expression
Assertion abpr ( { 𝑥𝜑 } = { 𝑌 , 𝑍 } ↔ ∀ 𝑥 ( 𝜑 ↔ ( 𝑥 = 𝑌𝑥 = 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 dfpr2 { 𝑌 , 𝑍 } = { 𝑥 ∣ ( 𝑥 = 𝑌𝑥 = 𝑍 ) }
2 1 abeqabi ( { 𝑥𝜑 } = { 𝑌 , 𝑍 } ↔ ∀ 𝑥 ( 𝜑 ↔ ( 𝑥 = 𝑌𝑥 = 𝑍 ) ) )