Description: Generalized condition for a class abstraction to be equal to some class. (Contributed by RP, 2-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abeqabi.a | ⊢ 𝐴 = { 𝑥 ∣ 𝜓 } | |
Assertion | abeqabi | ⊢ ( { 𝑥 ∣ 𝜑 } = 𝐴 ↔ ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqabi.a | ⊢ 𝐴 = { 𝑥 ∣ 𝜓 } | |
2 | 1 | eqeq2i | ⊢ ( { 𝑥 ∣ 𝜑 } = 𝐴 ↔ { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ 𝜓 } ) |
3 | abbib | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ 𝜓 } ↔ ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) ) | |
4 | 2 3 | bitri | ⊢ ( { 𝑥 ∣ 𝜑 } = 𝐴 ↔ ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) ) |