Metamath Proof Explorer


Theorem abeqabi

Description: Generalized condition for a class abstraction to be equal to some class. (Contributed by RP, 2-Sep-2024)

Ref Expression
Hypothesis abeqabi.a 𝐴 = { 𝑥𝜓 }
Assertion abeqabi ( { 𝑥𝜑 } = 𝐴 ↔ ∀ 𝑥 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 abeqabi.a 𝐴 = { 𝑥𝜓 }
2 1 eqeq2i ( { 𝑥𝜑 } = 𝐴 ↔ { 𝑥𝜑 } = { 𝑥𝜓 } )
3 abbib ( { 𝑥𝜑 } = { 𝑥𝜓 } ↔ ∀ 𝑥 ( 𝜑𝜓 ) )
4 2 3 bitri ( { 𝑥𝜑 } = 𝐴 ↔ ∀ 𝑥 ( 𝜑𝜓 ) )