Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Surreal Contributions
abpr
Next ⟩
abtp
Metamath Proof Explorer
Ascii
Unicode
Theorem
abpr
Description:
Condition for a class abstraction to be a pair.
(Contributed by
RP
, 25-Aug-2024)
Ref
Expression
Assertion
abpr
⊢
x
|
φ
=
Y
Z
↔
∀
x
φ
↔
x
=
Y
∨
x
=
Z
Proof
Step
Hyp
Ref
Expression
1
dfpr2
⊢
Y
Z
=
x
|
x
=
Y
∨
x
=
Z
2
1
abeqabi
⊢
x
|
φ
=
Y
Z
↔
∀
x
φ
↔
x
=
Y
∨
x
=
Z