Metamath Proof Explorer


Theorem ad4ant134

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 14-Apr-2022)

Ref Expression
Hypothesis ad4ant3.1 φψχθ
Assertion ad4ant134 φτψχθ

Proof

Step Hyp Ref Expression
1 ad4ant3.1 φψχθ
2 1 3expa φψχθ
3 2 adantllr φτψχθ