Metamath Proof Explorer


Theorem adantlllr

Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis adantlllr.1 φψχθτ
Assertion adantlllr φηψχθτ

Proof

Step Hyp Ref Expression
1 adantlllr.1 φψχθτ
2 1 adantl3r φηψχθτ