Metamath Proof Explorer


Theorem addcanad

Description: Cancelling a term on the left-hand side of a sum in an equality. Consequence of addcand . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses muld.1 φA
addcomd.2 φB
addcand.3 φC
addcanad.4 φA+B=A+C
Assertion addcanad φB=C

Proof

Step Hyp Ref Expression
1 muld.1 φA
2 addcomd.2 φB
3 addcand.3 φC
4 addcanad.4 φA+B=A+C
5 1 2 3 addcand φA+B=A+CB=C
6 4 5 mpbid φB=C