Metamath Proof Explorer


Theorem addneintr2d

Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad . Consequence of addcan2d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses muld.1 φA
addcomd.2 φB
addcand.3 φC
addneintr2d.4 φAB
Assertion addneintr2d φA+CB+C

Proof

Step Hyp Ref Expression
1 muld.1 φA
2 addcomd.2 φB
3 addcand.3 φC
4 addneintr2d.4 φAB
5 1 2 3 addcan2d φA+C=B+CA=B
6 5 necon3bid φA+CB+CAB
7 4 6 mpbird φA+CB+C