Metamath Proof Explorer


Theorem addneintrd

Description: Introducing a term on the left-hand side of a sum in a negated equality. Contrapositive of addcanad . Consequence of addcand . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses muld.1 φA
addcomd.2 φB
addcand.3 φC
addneintrd.4 φBC
Assertion addneintrd φA+BA+C

Proof

Step Hyp Ref Expression
1 muld.1 φA
2 addcomd.2 φB
3 addcand.3 φC
4 addneintrd.4 φBC
5 1 2 3 addcand φA+B=A+CB=C
6 5 necon3bid φA+BA+CBC
7 4 6 mpbird φA+BA+C