Metamath Proof Explorer


Theorem adh-minim-pm2.43

Description: Derivation of pm2.43 WhiteheadRussell p. 106 (also called "hilbert" or "W") from adh-minim-ax1 , adh-minim-ax2 , and ax-mp . It uses the derivation written DD22D21 in D-notation. (See head comment for an explanation.) (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minim-pm2.43 φφψφψ

Proof

Step Hyp Ref Expression
1 adh-minim-ax1 φφψφ
2 adh-minim-ax2 φφψφφφψφφ
3 1 2 ax-mp φφψφφ
4 adh-minim-ax2 φφψφφφψ
5 adh-minim-ax2 φφψφφφψφφψφφφφψφψ
6 4 5 ax-mp φφψφφφφψφψ
7 3 6 ax-mp φφψφψ