Step |
Hyp |
Ref |
Expression |
1 |
|
adh-minim-ax1 |
⊢ ( 𝜑 → ( ( 𝜑 → 𝜓 ) → 𝜑 ) ) |
2 |
|
adh-minim-ax2 |
⊢ ( ( 𝜑 → ( ( 𝜑 → 𝜓 ) → 𝜑 ) ) → ( ( 𝜑 → ( 𝜑 → 𝜓 ) ) → ( 𝜑 → 𝜑 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ( 𝜑 → ( 𝜑 → 𝜓 ) ) → ( 𝜑 → 𝜑 ) ) |
4 |
|
adh-minim-ax2 |
⊢ ( ( 𝜑 → ( 𝜑 → 𝜓 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → 𝜓 ) ) ) |
5 |
|
adh-minim-ax2 |
⊢ ( ( ( 𝜑 → ( 𝜑 → 𝜓 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → 𝜓 ) ) ) → ( ( ( 𝜑 → ( 𝜑 → 𝜓 ) ) → ( 𝜑 → 𝜑 ) ) → ( ( 𝜑 → ( 𝜑 → 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ( ( 𝜑 → ( 𝜑 → 𝜓 ) ) → ( 𝜑 → 𝜑 ) ) → ( ( 𝜑 → ( 𝜑 → 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) ) |
7 |
3 6
|
ax-mp |
⊢ ( ( 𝜑 → ( 𝜑 → 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) |