Metamath Proof Explorer


Theorem adh-minim-ax1

Description: Derivation of ax-1 from adh-minim and ax-mp . Carew Arthur Meredith derived ax-1 inA single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170. However, here we follow the shortened derivation by Ivo Thomas,On Meredith's sole positive axiom, Notre Dame Journal of Formal Logic, volume XV, number 3, July 1974, page 477. Polish prefix notation: CpCqp . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minim-ax1 ( 𝜑 → ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 adh-minim-ax1-ax2-lem1 ( 𝜑 → ( ( 𝜓 → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) → ( 𝜓𝜑 ) ) )
2 adh-minim-ax1-ax2-lem1 ( ( 𝜓𝜑 ) → ( ( 𝜓 → ( ( 𝜂 → ( ( 𝜁 → ( 𝜓𝜎 ) ) → ( 𝜁𝜎 ) ) ) → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) ) → ( 𝜓 → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) ) )
3 adh-minim-ax1-ax2-lem3 ( ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → ( 𝜓𝜑 ) ) → ( 𝜓 → ( ( 𝜂 → ( ( 𝜁 → ( 𝜓𝜎 ) ) → ( 𝜁𝜎 ) ) ) → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) ) )
4 adh-minim-ax1-ax2-lem4 ( ( ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → ( 𝜓𝜑 ) ) → ( 𝜓 → ( ( 𝜂 → ( ( 𝜁 → ( 𝜓𝜎 ) ) → ( 𝜁𝜎 ) ) ) → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) ) ) → ( ( ( 𝜓𝜑 ) → ( ( 𝜓 → ( ( 𝜂 → ( ( 𝜁 → ( 𝜓𝜎 ) ) → ( 𝜁𝜎 ) ) ) → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) ) → ( 𝜓 → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) ) ) → ( ( 𝜓𝜑 ) → ( 𝜓 → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) ) ) )
5 3 4 ax-mp ( ( ( 𝜓𝜑 ) → ( ( 𝜓 → ( ( 𝜂 → ( ( 𝜁 → ( 𝜓𝜎 ) ) → ( 𝜁𝜎 ) ) ) → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) ) → ( 𝜓 → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) ) ) → ( ( 𝜓𝜑 ) → ( 𝜓 → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) ) )
6 2 5 ax-mp ( ( 𝜓𝜑 ) → ( 𝜓 → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) )
7 adh-minim-ax1-ax2-lem4 ( ( ( 𝜓𝜑 ) → ( 𝜓 → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) ) → ( ( 𝜑 → ( ( 𝜓 → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) → ( 𝜓𝜑 ) ) ) → ( 𝜑 → ( 𝜓𝜑 ) ) ) )
8 6 7 ax-mp ( ( 𝜑 → ( ( 𝜓 → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜑 ) ) → ( 𝜓𝜑 ) ) ) → ( 𝜑 → ( 𝜓𝜑 ) ) )
9 1 8 ax-mp ( 𝜑 → ( 𝜓𝜑 ) )