Metamath Proof Explorer


Theorem adh-minim-ax1-ax2-lem1

Description: First lemma for the derivation of ax-1 and ax-2 from adh-minim and ax-mp . Polish prefix notation: CpCCqCCrCCsCqtCstuCqu . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minim-ax1-ax2-lem1 ( 𝜑 → ( ( 𝜓 → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜂 ) ) → ( 𝜓𝜂 ) ) )

Proof

Step Hyp Ref Expression
1 adh-minim ( ( ( 𝜁𝜃 ) → 𝜓 ) → ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) )
2 adh-minim ( ( ( ( 𝜁𝜃 ) → 𝜓 ) → ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) ) → ( 𝜑 → ( ( 𝜓 → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜂 ) ) → ( 𝜓𝜂 ) ) ) )
3 1 2 ax-mp ( 𝜑 → ( ( 𝜓 → ( ( 𝜒 → ( ( 𝜃 → ( 𝜓𝜏 ) ) → ( 𝜃𝜏 ) ) ) → 𝜂 ) ) → ( 𝜓𝜂 ) ) )