Description: First lemma for the derivation of ax-1 and ax-2 from adh-minim and ax-mp . Polish prefix notation: CpCCqCCrCCsCqtCstuCqu . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adh-minim-ax1-ax2-lem1 | |- ( ph -> ( ( ps -> ( ( ch -> ( ( th -> ( ps -> ta ) ) -> ( th -> ta ) ) ) -> et ) ) -> ( ps -> et ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adh-minim | |- ( ( ( ze -> th ) -> ps ) -> ( ch -> ( ( th -> ( ps -> ta ) ) -> ( th -> ta ) ) ) ) |
|
| 2 | adh-minim | |- ( ( ( ( ze -> th ) -> ps ) -> ( ch -> ( ( th -> ( ps -> ta ) ) -> ( th -> ta ) ) ) ) -> ( ph -> ( ( ps -> ( ( ch -> ( ( th -> ( ps -> ta ) ) -> ( th -> ta ) ) ) -> et ) ) -> ( ps -> et ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ph -> ( ( ps -> ( ( ch -> ( ( th -> ( ps -> ta ) ) -> ( th -> ta ) ) ) -> et ) ) -> ( ps -> et ) ) ) |