Metamath Proof Explorer


Theorem adh-minim-ax1-ax2-lem1

Description: First lemma for the derivation of ax-1 and ax-2 from adh-minim and ax-mp . Polish prefix notation: CpCCqCCrCCsCqtCstuCqu . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minim-ax1-ax2-lem1
|- ( ph -> ( ( ps -> ( ( ch -> ( ( th -> ( ps -> ta ) ) -> ( th -> ta ) ) ) -> et ) ) -> ( ps -> et ) ) )

Proof

Step Hyp Ref Expression
1 adh-minim
 |-  ( ( ( ze -> th ) -> ps ) -> ( ch -> ( ( th -> ( ps -> ta ) ) -> ( th -> ta ) ) ) )
2 adh-minim
 |-  ( ( ( ( ze -> th ) -> ps ) -> ( ch -> ( ( th -> ( ps -> ta ) ) -> ( th -> ta ) ) ) ) -> ( ph -> ( ( ps -> ( ( ch -> ( ( th -> ( ps -> ta ) ) -> ( th -> ta ) ) ) -> et ) ) -> ( ps -> et ) ) ) )
3 1 2 ax-mp
 |-  ( ph -> ( ( ps -> ( ( ch -> ( ( th -> ( ps -> ta ) ) -> ( th -> ta ) ) ) -> et ) ) -> ( ps -> et ) ) )