Metamath Proof Explorer


Theorem adh-minim-ax1-ax2-lem2

Description: Second lemma for the derivation of ax-1 and ax-2 from adh-minim and ax-mp . Polish prefix notation: CCpCCqCCrCpsCrstCpt . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minim-ax1-ax2-lem2
|- ( ( ph -> ( ( ps -> ( ( ch -> ( ph -> th ) ) -> ( ch -> th ) ) ) -> ta ) ) -> ( ph -> ta ) )

Proof

Step Hyp Ref Expression
1 adh-minim-ax1-ax2-lem1
 |-  ( et -> ( ( ze -> ( ( si -> ( ( rh -> ( ze -> mu ) ) -> ( rh -> mu ) ) ) -> la ) ) -> ( ze -> la ) ) )
2 adh-minim-ax1-ax2-lem1
 |-  ( ( et -> ( ( ze -> ( ( si -> ( ( rh -> ( ze -> mu ) ) -> ( rh -> mu ) ) ) -> la ) ) -> ( ze -> la ) ) ) -> ( ( ph -> ( ( ps -> ( ( ch -> ( ph -> th ) ) -> ( ch -> th ) ) ) -> ta ) ) -> ( ph -> ta ) ) )
3 1 2 ax-mp
 |-  ( ( ph -> ( ( ps -> ( ( ch -> ( ph -> th ) ) -> ( ch -> th ) ) ) -> ta ) ) -> ( ph -> ta ) )