Metamath Proof Explorer


Theorem adh-minim-ax1-ax2-lem3

Description: Third lemma for the derivation of ax-1 and ax-2 from adh-minim and ax-mp . Polish prefix notation: CCpCqrCqCsCpr . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minim-ax1-ax2-lem3
|- ( ( ph -> ( ps -> ch ) ) -> ( ps -> ( th -> ( ph -> ch ) ) ) )

Proof

Step Hyp Ref Expression
1 adh-minim-ax1-ax2-lem1
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ( ps -> ( ( th -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( th -> ( ph -> ch ) ) ) ) -> ( ps -> ( th -> ( ph -> ch ) ) ) ) )
2 adh-minim-ax1-ax2-lem2
 |-  ( ( ( ph -> ( ps -> ch ) ) -> ( ( ps -> ( ( th -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( th -> ( ph -> ch ) ) ) ) -> ( ps -> ( th -> ( ph -> ch ) ) ) ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( ps -> ( th -> ( ph -> ch ) ) ) ) )
3 1 2 ax-mp
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ps -> ( th -> ( ph -> ch ) ) ) )