Metamath Proof Explorer


Theorem adh-minim-ax1-ax2-lem4

Description: Fourth lemma for the derivation of ax-1 and ax-2 from adh-minim and ax-mp . Polish prefix notation: CCCpqrCCqCrsCqs . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minim-ax1-ax2-lem4
|- ( ( ( ph -> ps ) -> ch ) -> ( ( ps -> ( ch -> th ) ) -> ( ps -> th ) ) )

Proof

Step Hyp Ref Expression
1 adh-minim
 |-  ( ( ( ph -> ps ) -> ch ) -> ( ( et -> ( ( ze -> ( ( ( ph -> ps ) -> ch ) -> si ) ) -> ( ze -> si ) ) ) -> ( ( ps -> ( ch -> th ) ) -> ( ps -> th ) ) ) )
2 adh-minim-ax1-ax2-lem2
 |-  ( ( ( ( ph -> ps ) -> ch ) -> ( ( et -> ( ( ze -> ( ( ( ph -> ps ) -> ch ) -> si ) ) -> ( ze -> si ) ) ) -> ( ( ps -> ( ch -> th ) ) -> ( ps -> th ) ) ) ) -> ( ( ( ph -> ps ) -> ch ) -> ( ( ps -> ( ch -> th ) ) -> ( ps -> th ) ) ) )
3 1 2 ax-mp
 |-  ( ( ( ph -> ps ) -> ch ) -> ( ( ps -> ( ch -> th ) ) -> ( ps -> th ) ) )