Metamath Proof Explorer


Theorem adh-minim-ax1-ax2-lem4

Description: Fourth lemma for the derivation of ax-1 and ax-2 from adh-minim and ax-mp . Polish prefix notation: CCCpqrCCqCrsCqs . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minim-ax1-ax2-lem4 ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜓 → ( 𝜒𝜃 ) ) → ( 𝜓𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 adh-minim ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜂 → ( ( 𝜁 → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜎 ) ) → ( 𝜁𝜎 ) ) ) → ( ( 𝜓 → ( 𝜒𝜃 ) ) → ( 𝜓𝜃 ) ) ) )
2 adh-minim-ax1-ax2-lem2 ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜂 → ( ( 𝜁 → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜎 ) ) → ( 𝜁𝜎 ) ) ) → ( ( 𝜓 → ( 𝜒𝜃 ) ) → ( 𝜓𝜃 ) ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜓 → ( 𝜒𝜃 ) ) → ( 𝜓𝜃 ) ) ) )
3 1 2 ax-mp ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜓 → ( 𝜒𝜃 ) ) → ( 𝜓𝜃 ) ) )