Metamath Proof Explorer


Theorem adh-minim-ax1-ax2-lem2

Description: Second lemma for the derivation of ax-1 and ax-2 from adh-minim and ax-mp . Polish prefix notation: CCpCCqCCrCpsCrstCpt . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minim-ax1-ax2-lem2 ( ( 𝜑 → ( ( 𝜓 → ( ( 𝜒 → ( 𝜑𝜃 ) ) → ( 𝜒𝜃 ) ) ) → 𝜏 ) ) → ( 𝜑𝜏 ) )

Proof

Step Hyp Ref Expression
1 adh-minim-ax1-ax2-lem1 ( 𝜂 → ( ( 𝜁 → ( ( 𝜎 → ( ( 𝜌 → ( 𝜁𝜇 ) ) → ( 𝜌𝜇 ) ) ) → 𝜆 ) ) → ( 𝜁𝜆 ) ) )
2 adh-minim-ax1-ax2-lem1 ( ( 𝜂 → ( ( 𝜁 → ( ( 𝜎 → ( ( 𝜌 → ( 𝜁𝜇 ) ) → ( 𝜌𝜇 ) ) ) → 𝜆 ) ) → ( 𝜁𝜆 ) ) ) → ( ( 𝜑 → ( ( 𝜓 → ( ( 𝜒 → ( 𝜑𝜃 ) ) → ( 𝜒𝜃 ) ) ) → 𝜏 ) ) → ( 𝜑𝜏 ) ) )
3 1 2 ax-mp ( ( 𝜑 → ( ( 𝜓 → ( ( 𝜒 → ( 𝜑𝜃 ) ) → ( 𝜒𝜃 ) ) ) → 𝜏 ) ) → ( 𝜑𝜏 ) )