Description: Second lemma for the derivation of ax-1 and ax-2 from adh-minim and ax-mp . Polish prefix notation: CCpCCqCCrCpsCrstCpt . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | adh-minim-ax1-ax2-lem2 | ⊢ ( ( 𝜑 → ( ( 𝜓 → ( ( 𝜒 → ( 𝜑 → 𝜃 ) ) → ( 𝜒 → 𝜃 ) ) ) → 𝜏 ) ) → ( 𝜑 → 𝜏 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adh-minim-ax1-ax2-lem1 | ⊢ ( 𝜂 → ( ( 𝜁 → ( ( 𝜎 → ( ( 𝜌 → ( 𝜁 → 𝜇 ) ) → ( 𝜌 → 𝜇 ) ) ) → 𝜆 ) ) → ( 𝜁 → 𝜆 ) ) ) | |
2 | adh-minim-ax1-ax2-lem1 | ⊢ ( ( 𝜂 → ( ( 𝜁 → ( ( 𝜎 → ( ( 𝜌 → ( 𝜁 → 𝜇 ) ) → ( 𝜌 → 𝜇 ) ) ) → 𝜆 ) ) → ( 𝜁 → 𝜆 ) ) ) → ( ( 𝜑 → ( ( 𝜓 → ( ( 𝜒 → ( 𝜑 → 𝜃 ) ) → ( 𝜒 → 𝜃 ) ) ) → 𝜏 ) ) → ( 𝜑 → 𝜏 ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( 𝜑 → ( ( 𝜓 → ( ( 𝜒 → ( 𝜑 → 𝜃 ) ) → ( 𝜒 → 𝜃 ) ) ) → 𝜏 ) ) → ( 𝜑 → 𝜏 ) ) |