Metamath Proof Explorer


Theorem adh-minim-ax1-ax2-lem3

Description: Third lemma for the derivation of ax-1 and ax-2 from adh-minim and ax-mp . Polish prefix notation: CCpCqrCqCsCpr . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minim-ax1-ax2-lem3 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜓 → ( 𝜃 → ( 𝜑𝜒 ) ) ) )

Proof

Step Hyp Ref Expression
1 adh-minim-ax1-ax2-lem1 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜓 → ( ( 𝜃 → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( 𝜃 → ( 𝜑𝜒 ) ) ) ) → ( 𝜓 → ( 𝜃 → ( 𝜑𝜒 ) ) ) ) )
2 adh-minim-ax1-ax2-lem2 ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜓 → ( ( 𝜃 → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( 𝜃 → ( 𝜑𝜒 ) ) ) ) → ( 𝜓 → ( 𝜃 → ( 𝜑𝜒 ) ) ) ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜓 → ( 𝜃 → ( 𝜑𝜒 ) ) ) ) )
3 1 2 ax-mp ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜓 → ( 𝜃 → ( 𝜑𝜒 ) ) ) )