Metamath Proof Explorer


Theorem adh-minimp-jarr-lem2

Description: Second lemma for the derivation of jarr , and indirectly ax-1 , a commuted form of ax-2 , and ax-2 proper, from adh-minimp and ax-mp . Polish prefix notation: CCCpqCCCrsCCCtrCsuCruvCqv . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-jarr-lem2 φ ψ χ θ τ χ θ η χ η ζ ψ ζ

Proof

Step Hyp Ref Expression
1 adh-minimp ψ χ θ τ χ θ η χ η
2 adh-minimp-jarr-imim1-ax2c-lem1 ψ χ θ τ χ θ η χ η φ ψ χ θ τ χ θ η χ η ζ ψ ζ
3 1 2 ax-mp φ ψ χ θ τ χ θ η χ η ζ ψ ζ