Metamath Proof Explorer


Theorem adh-minimp-jarr-lem2

Description: Second lemma for the derivation of jarr , and indirectly ax-1 , a commuted form of ax-2 , and ax-2 proper, from adh-minimp and ax-mp . Polish prefix notation: CCCpqCCCrsCCCtrCsuCruvCqv . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-jarr-lem2 ( ( ( 𝜑𝜓 ) → ( ( ( 𝜒𝜃 ) → ( ( ( 𝜏𝜒 ) → ( 𝜃𝜂 ) ) → ( 𝜒𝜂 ) ) ) → 𝜁 ) ) → ( 𝜓𝜁 ) )

Proof

Step Hyp Ref Expression
1 adh-minimp ( 𝜓 → ( ( 𝜒𝜃 ) → ( ( ( 𝜏𝜒 ) → ( 𝜃𝜂 ) ) → ( 𝜒𝜂 ) ) ) )
2 adh-minimp-jarr-imim1-ax2c-lem1 ( ( 𝜓 → ( ( 𝜒𝜃 ) → ( ( ( 𝜏𝜒 ) → ( 𝜃𝜂 ) ) → ( 𝜒𝜂 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( 𝜒𝜃 ) → ( ( ( 𝜏𝜒 ) → ( 𝜃𝜂 ) ) → ( 𝜒𝜂 ) ) ) → 𝜁 ) ) → ( 𝜓𝜁 ) ) )
3 1 2 ax-mp ( ( ( 𝜑𝜓 ) → ( ( ( 𝜒𝜃 ) → ( ( ( 𝜏𝜒 ) → ( 𝜃𝜂 ) ) → ( 𝜒𝜂 ) ) ) → 𝜁 ) ) → ( 𝜓𝜁 ) )