Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Adhemar
Minimal implicational calculus
adh-minimp-jarr-ax2c-lem3
Metamath Proof Explorer
Description: Third lemma for the derivation of jarr and a commuted form of ax-2 ,
and indirectly ax-1 and ax-2 proper , from adh-minimp and ax-mp .
Polish prefix notation: CCCCpqCCCrpCqsCpstt . (Contributed by ADH , 10-Nov-2023) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
adh-minimp-jarr-ax2c-lem3
⊢ ( ( ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜒 → 𝜑 ) → ( 𝜓 → 𝜃 ) ) → ( 𝜑 → 𝜃 ) ) ) → 𝜏 ) → 𝜏 )
Proof
Step
Hyp
Ref
Expression
1
adh-minimp-jarr-lem2
⊢ ( ( ( 𝜂 → ( ( 𝜁 → 𝜎 ) → ( ( ( 𝜌 → 𝜁 ) → ( 𝜎 → 𝜇 ) ) → ( 𝜁 → 𝜇 ) ) ) ) → ( ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜒 → 𝜑 ) → ( 𝜓 → 𝜃 ) ) → ( 𝜑 → 𝜃 ) ) ) → 𝜏 ) ) → ( ( ( 𝜁 → 𝜎 ) → ( ( ( 𝜌 → 𝜁 ) → ( 𝜎 → 𝜇 ) ) → ( 𝜁 → 𝜇 ) ) ) → 𝜏 ) )
2
adh-minimp-jarr-lem2
⊢ ( ( ( ( 𝜂 → ( ( 𝜁 → 𝜎 ) → ( ( ( 𝜌 → 𝜁 ) → ( 𝜎 → 𝜇 ) ) → ( 𝜁 → 𝜇 ) ) ) ) → ( ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜒 → 𝜑 ) → ( 𝜓 → 𝜃 ) ) → ( 𝜑 → 𝜃 ) ) ) → 𝜏 ) ) → ( ( ( 𝜁 → 𝜎 ) → ( ( ( 𝜌 → 𝜁 ) → ( 𝜎 → 𝜇 ) ) → ( 𝜁 → 𝜇 ) ) ) → 𝜏 ) ) → ( ( ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜒 → 𝜑 ) → ( 𝜓 → 𝜃 ) ) → ( 𝜑 → 𝜃 ) ) ) → 𝜏 ) → 𝜏 ) )
3
1 2
ax-mp
⊢ ( ( ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜒 → 𝜑 ) → ( 𝜓 → 𝜃 ) ) → ( 𝜑 → 𝜃 ) ) ) → 𝜏 ) → 𝜏 )