Metamath Proof Explorer


Theorem adh-minimp-jarr-ax2c-lem3

Description: Third lemma for the derivation of jarr and a commuted form of ax-2 , and indirectly ax-1 and ax-2 proper , from adh-minimp and ax-mp . Polish prefix notation: CCCCpqCCCrpCqsCpstt . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-jarr-ax2c-lem3 ( ( ( ( 𝜑𝜓 ) → ( ( ( 𝜒𝜑 ) → ( 𝜓𝜃 ) ) → ( 𝜑𝜃 ) ) ) → 𝜏 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 adh-minimp-jarr-lem2 ( ( ( 𝜂 → ( ( 𝜁𝜎 ) → ( ( ( 𝜌𝜁 ) → ( 𝜎𝜇 ) ) → ( 𝜁𝜇 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( 𝜒𝜑 ) → ( 𝜓𝜃 ) ) → ( 𝜑𝜃 ) ) ) → 𝜏 ) ) → ( ( ( 𝜁𝜎 ) → ( ( ( 𝜌𝜁 ) → ( 𝜎𝜇 ) ) → ( 𝜁𝜇 ) ) ) → 𝜏 ) )
2 adh-minimp-jarr-lem2 ( ( ( ( 𝜂 → ( ( 𝜁𝜎 ) → ( ( ( 𝜌𝜁 ) → ( 𝜎𝜇 ) ) → ( 𝜁𝜇 ) ) ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( 𝜒𝜑 ) → ( 𝜓𝜃 ) ) → ( 𝜑𝜃 ) ) ) → 𝜏 ) ) → ( ( ( 𝜁𝜎 ) → ( ( ( 𝜌𝜁 ) → ( 𝜎𝜇 ) ) → ( 𝜁𝜇 ) ) ) → 𝜏 ) ) → ( ( ( ( 𝜑𝜓 ) → ( ( ( 𝜒𝜑 ) → ( 𝜓𝜃 ) ) → ( 𝜑𝜃 ) ) ) → 𝜏 ) → 𝜏 ) )
3 1 2 ax-mp ( ( ( ( 𝜑𝜓 ) → ( ( ( 𝜒𝜑 ) → ( 𝜓𝜃 ) ) → ( 𝜑𝜃 ) ) ) → 𝜏 ) → 𝜏 )