Metamath Proof Explorer


Theorem adh-minimp-jarr-imim1-ax2c-lem1

Description: First lemma for the derivation of jarr , imim1 , and a commuted form of ax-2 , and indirectly ax-1 and ax-2 , from adh-minimp and ax-mp . Polish prefix notation: CCpqCCCrpCqsCps . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-jarr-imim1-ax2c-lem1 ( ( 𝜑𝜓 ) → ( ( ( 𝜒𝜑 ) → ( 𝜓𝜃 ) ) → ( 𝜑𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 adh-minimp ( 𝜂 → ( ( 𝜁𝜎 ) → ( ( ( 𝜌𝜁 ) → ( 𝜎𝜇 ) ) → ( 𝜁𝜇 ) ) ) )
2 adh-minimp ( ( 𝜂 → ( ( 𝜁𝜎 ) → ( ( ( 𝜌𝜁 ) → ( 𝜎𝜇 ) ) → ( 𝜁𝜇 ) ) ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜒𝜑 ) → ( 𝜓𝜃 ) ) → ( 𝜑𝜃 ) ) ) )
3 1 2 ax-mp ( ( 𝜑𝜓 ) → ( ( ( 𝜒𝜑 ) → ( 𝜓𝜃 ) ) → ( 𝜑𝜃 ) ) )