Metamath Proof Explorer


Theorem adh-minimp-jarr-imim1-ax2c-lem1

Description: First lemma for the derivation of jarr , imim1 , and a commuted form of ax-2 , and indirectly ax-1 and ax-2 , from adh-minimp and ax-mp . Polish prefix notation: CCpqCCCrpCqsCps . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-jarr-imim1-ax2c-lem1
|- ( ( ph -> ps ) -> ( ( ( ch -> ph ) -> ( ps -> th ) ) -> ( ph -> th ) ) )

Proof

Step Hyp Ref Expression
1 adh-minimp
 |-  ( et -> ( ( ze -> si ) -> ( ( ( rh -> ze ) -> ( si -> mu ) ) -> ( ze -> mu ) ) ) )
2 adh-minimp
 |-  ( ( et -> ( ( ze -> si ) -> ( ( ( rh -> ze ) -> ( si -> mu ) ) -> ( ze -> mu ) ) ) ) -> ( ( ph -> ps ) -> ( ( ( ch -> ph ) -> ( ps -> th ) ) -> ( ph -> th ) ) ) )
3 1 2 ax-mp
 |-  ( ( ph -> ps ) -> ( ( ( ch -> ph ) -> ( ps -> th ) ) -> ( ph -> th ) ) )