Metamath Proof Explorer


Theorem adh-minimp-pm2.43

Description: Derivation of pm2.43 WhiteheadRussell p. 106 (also called "hilbert" or "W") from adh-minimp-ax1 , adh-minimp-ax2 , and ax-mp . It uses the derivation written DD22D21 in D-notation. (See head comment for an explanation.) Polish prefix notation: CCpCpqCpq . (Contributed by BJ, 31-May-2021) (Revised by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-pm2.43 φ φ ψ φ ψ

Proof

Step Hyp Ref Expression
1 adh-minimp-ax1 φ φ ψ φ
2 adh-minimp-ax2 φ φ ψ φ φ φ ψ φ φ
3 1 2 ax-mp φ φ ψ φ φ
4 adh-minimp-ax2 φ φ ψ φ φ φ ψ
5 adh-minimp-ax2 φ φ ψ φ φ φ ψ φ φ ψ φ φ φ φ ψ φ ψ
6 4 5 ax-mp φ φ ψ φ φ φ φ ψ φ ψ
7 3 6 ax-mp φ φ ψ φ ψ