Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Jarvin Udandy aifftbifffaibifff  
				
		 
		
			
		 
		Description:   Given a is equivalent to T., Given b is equivalent to F., there exists a
       proof for that a iff b is false.  (Contributed by Jarvin Udandy , 7-Sep-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						aifftbifffaibifff.1    ⊢   φ   ↔  ⊤       
					 
					
						aifftbifffaibifff.2    ⊢   ψ   ↔  ⊥       
					 
				
					Assertion 
					aifftbifffaibifff    ⊢    φ   ↔   ψ    ↔  ⊥       
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							aifftbifffaibifff.1   ⊢   φ   ↔  ⊤       
						
							2 
								
							 
							aifftbifffaibifff.2   ⊢   ψ   ↔  ⊥       
						
							3 
								1 
							 
							aistia  ⊢   φ      
						
							4 
								2 
							 
							aisfina  ⊢   ¬   ψ        
						
							5 
								3  4 
							 
							abnotbtaxb  ⊢    φ   ⊻   ψ       
						
							6 
								5 
							 
							axorbtnotaiffb  ⊢   ¬    φ   ↔   ψ         
						
							7 
								
							 
							nbfal   ⊢   ¬    φ   ↔   ψ      ↔     φ   ↔   ψ    ↔  ⊥        
						
							8 
								7 
							 
							biimpi   ⊢   ¬    φ   ↔   ψ      →     φ   ↔   ψ    ↔  ⊥        
						
							9 
								6  8 
							 
							ax-mp   ⊢    φ   ↔   ψ    ↔  ⊥