Metamath Proof Explorer


Theorem alcomiw

Description: Weak version of ax-11 . See alcomw for the biconditional form. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017) (Proof shortened by Wolf Lammen, 28-Dec-2023)

Ref Expression
Hypothesis alcomiw.1 y=zφψ
Assertion alcomiw xyφyxφ

Proof

Step Hyp Ref Expression
1 alcomiw.1 y=zφψ
2 1 cbvalvw yφzψ
3 2 biimpi yφzψ
4 3 alimi xyφxzψ
5 ax-5 xzψyxzψ
6 1 biimprd y=zψφ
7 6 equcoms z=yψφ
8 7 spimvw zψφ
9 8 2alimi yxzψyxφ
10 4 5 9 3syl xyφyxφ