Metamath Proof Explorer


Theorem alephordilem1

Description: Lemma for alephordi . (Contributed by NM, 23-Oct-2009) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion alephordilem1 AOnAsucA

Proof

Step Hyp Ref Expression
1 alephon AOn
2 onenon AOnAdomcard
3 harsdom AdomcardAharA
4 1 2 3 mp2b AharA
5 alephsuc AOnsucA=harA
6 4 5 breqtrrid AOnAsucA