| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq2 |
|
| 2 |
|
fveq2 |
|
| 3 |
2
|
breq2d |
|
| 4 |
1 3
|
imbi12d |
|
| 5 |
|
eleq2 |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
breq2d |
|
| 8 |
5 7
|
imbi12d |
|
| 9 |
|
eleq2 |
|
| 10 |
|
fveq2 |
|
| 11 |
10
|
breq2d |
|
| 12 |
9 11
|
imbi12d |
|
| 13 |
|
eleq2 |
|
| 14 |
|
fveq2 |
|
| 15 |
14
|
breq2d |
|
| 16 |
13 15
|
imbi12d |
|
| 17 |
|
noel |
|
| 18 |
17
|
pm2.21i |
|
| 19 |
|
vex |
|
| 20 |
19
|
elsuc2 |
|
| 21 |
|
alephordilem1 |
|
| 22 |
|
sdomtr |
|
| 23 |
21 22
|
sylan2 |
|
| 24 |
23
|
expcom |
|
| 25 |
24
|
imim2d |
|
| 26 |
25
|
com23 |
|
| 27 |
|
fveq2 |
|
| 28 |
27
|
breq1d |
|
| 29 |
21 28
|
imbitrrid |
|
| 30 |
29
|
a1d |
|
| 31 |
30
|
com3r |
|
| 32 |
26 31
|
jaod |
|
| 33 |
20 32
|
biimtrid |
|
| 34 |
33
|
com23 |
|
| 35 |
|
fvexd |
|
| 36 |
|
fveq2 |
|
| 37 |
36
|
ssiun2s |
|
| 38 |
|
vex |
|
| 39 |
|
alephlim |
|
| 40 |
38 39
|
mpan |
|
| 41 |
40
|
sseq2d |
|
| 42 |
37 41
|
imbitrrid |
|
| 43 |
|
ssdomg |
|
| 44 |
35 42 43
|
sylsyld |
|
| 45 |
|
limsuc |
|
| 46 |
|
fveq2 |
|
| 47 |
46
|
ssiun2s |
|
| 48 |
40
|
sseq2d |
|
| 49 |
47 48
|
imbitrrid |
|
| 50 |
|
ssdomg |
|
| 51 |
35 49 50
|
sylsyld |
|
| 52 |
45 51
|
sylbid |
|
| 53 |
52
|
imp |
|
| 54 |
|
domnsym |
|
| 55 |
53 54
|
syl |
|
| 56 |
|
limelon |
|
| 57 |
38 56
|
mpan |
|
| 58 |
|
onelon |
|
| 59 |
57 58
|
sylan |
|
| 60 |
|
ensym |
|
| 61 |
|
alephordilem1 |
|
| 62 |
|
ensdomtr |
|
| 63 |
62
|
ex |
|
| 64 |
60 61 63
|
syl2im |
|
| 65 |
59 64
|
syl5com |
|
| 66 |
55 65
|
mtod |
|
| 67 |
66
|
ex |
|
| 68 |
44 67
|
jcad |
|
| 69 |
|
brsdom |
|
| 70 |
68 69
|
imbitrrdi |
|
| 71 |
70
|
a1d |
|
| 72 |
4 8 12 16 18 34 71
|
tfinds |
|