Metamath Proof Explorer


Theorem atcvrj2

Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypotheses atcvrj1x.l ˙=K
atcvrj1x.j ˙=joinK
atcvrj1x.c C=K
atcvrj1x.a A=AtomsK
Assertion atcvrj2 KHLPAQARAQRP˙Q˙RPCQ˙R

Proof

Step Hyp Ref Expression
1 atcvrj1x.l ˙=K
2 atcvrj1x.j ˙=joinK
3 atcvrj1x.c C=K
4 atcvrj1x.a A=AtomsK
5 1 2 3 4 atcvrj2b KHLPAQARAQRP˙Q˙RPCQ˙R
6 5 biimp3a KHLPAQARAQRP˙Q˙RPCQ˙R