Metamath Proof Explorer


Axiom ax-11d

Description: Distinct variable version of ax-12 . (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion ax-11d x=yyφxx=yφ

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx setvarx
1 0 cv setvarx
2 vy setvary
3 2 cv setvary
4 1 3 wceq wffx=y
5 wph wffφ
6 5 2 wal wffyφ
7 4 5 wi wffx=yφ
8 7 0 wal wffxx=yφ
9 6 8 wi wffyφxx=yφ
10 4 9 wi wffx=yyφxx=yφ