Metamath Proof Explorer


Axiom ax-11d

Description: Distinct variable version of ax-12 . (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion ax-11d x = y y φ x x = y φ

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx setvar x
1 0 cv setvar x
2 vy setvar y
3 2 cv setvar y
4 1 3 wceq wff x = y
5 wph wff φ
6 5 2 wal wff y φ
7 4 5 wi wff x = y φ
8 7 0 wal wff x x = y φ
9 6 8 wi wff y φ x x = y φ
10 4 9 wi wff x = y y φ x x = y φ