Metamath Proof Explorer
Description: Distinct variable version of ax-12 . (Contributed by Mario Carneiro, 14-Aug-2015)
|
|
Ref |
Expression |
|
Assertion |
ax-11d |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑦 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
vx |
⊢ 𝑥 |
1 |
0
|
cv |
⊢ 𝑥 |
2 |
|
vy |
⊢ 𝑦 |
3 |
2
|
cv |
⊢ 𝑦 |
4 |
1 3
|
wceq |
⊢ 𝑥 = 𝑦 |
5 |
|
wph |
⊢ 𝜑 |
6 |
5 2
|
wal |
⊢ ∀ 𝑦 𝜑 |
7 |
4 5
|
wi |
⊢ ( 𝑥 = 𝑦 → 𝜑 ) |
8 |
7 0
|
wal |
⊢ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) |
9 |
6 8
|
wi |
⊢ ( ∀ 𝑦 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
10 |
4 9
|
wi |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑦 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |