Metamath Proof Explorer


Axiom ax-11d

Description: Distinct variable version of ax-12 . (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion ax-11d ( 𝑥 = 𝑦 → ( ∀ 𝑦 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 0 cv 𝑥
2 vy 𝑦
3 2 cv 𝑦
4 1 3 wceq 𝑥 = 𝑦
5 wph 𝜑
6 5 2 wal 𝑦 𝜑
7 4 5 wi ( 𝑥 = 𝑦𝜑 )
8 7 0 wal 𝑥 ( 𝑥 = 𝑦𝜑 )
9 6 8 wi ( ∀ 𝑦 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
10 4 9 wi ( 𝑥 = 𝑦 → ( ∀ 𝑦 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )