Metamath Proof Explorer
Description: Distinct variable version of ax-12 . (Contributed by Mario Carneiro, 14-Aug-2015)
|
|
Ref |
Expression |
|
Assertion |
ax-11d |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑦 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
vx |
⊢ 𝑥 |
| 1 |
0
|
cv |
⊢ 𝑥 |
| 2 |
|
vy |
⊢ 𝑦 |
| 3 |
2
|
cv |
⊢ 𝑦 |
| 4 |
1 3
|
wceq |
⊢ 𝑥 = 𝑦 |
| 5 |
|
wph |
⊢ 𝜑 |
| 6 |
5 2
|
wal |
⊢ ∀ 𝑦 𝜑 |
| 7 |
4 5
|
wi |
⊢ ( 𝑥 = 𝑦 → 𝜑 ) |
| 8 |
7 0
|
wal |
⊢ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) |
| 9 |
6 8
|
wi |
⊢ ( ∀ 𝑦 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 10 |
4 9
|
wi |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑦 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |