Metamath Proof Explorer


Axiom ax-dc

Description: Dependent Choice. Axiom DC1 of Schechter p. 149. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. Dependent choice is equivalent to the statement that every (nonempty) pruned tree has a branch. This axiom is redundant in ZFC; see axdc . But ZF+DC is strictly weaker than ZF+AC, so this axiom provides for theorems that do not need the full power of AC. (Contributed by Mario Carneiro, 25-Jan-2013)

Ref Expression
Assertion ax-dc yzyxzranxdomxfnωfnxfsucn

Detailed syntax breakdown

Step Hyp Ref Expression
0 vy setvary
1 vz setvarz
2 0 cv setvary
3 vx setvarx
4 3 cv setvarx
5 1 cv setvarz
6 2 5 4 wbr wffyxz
7 6 1 wex wffzyxz
8 7 0 wex wffyzyxz
9 4 crn classranx
10 4 cdm classdomx
11 9 10 wss wffranxdomx
12 8 11 wa wffyzyxzranxdomx
13 vf setvarf
14 vn setvarn
15 com classω
16 13 cv setvarf
17 14 cv setvarn
18 17 16 cfv classfn
19 17 csuc classsucn
20 19 16 cfv classfsucn
21 18 20 4 wbr wfffnxfsucn
22 21 14 15 wral wffnωfnxfsucn
23 22 13 wex wfffnωfnxfsucn
24 12 23 wi wffyzyxzranxdomxfnωfnxfsucn