Metamath Proof Explorer


Theorem axdc

Description: This theorem derives ax-dc using ax-ac and ax-inf . Thus,AC impliesDC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013)

Ref Expression
Assertion axdc y z y x z ran x dom x f n ω f n x f suc n

Proof

Step Hyp Ref Expression
1 breq2 w = z u x w u x z
2 1 cbvabv w | u x w = z | u x z
3 breq1 u = v u x z v x z
4 3 abbidv u = v z | u x z = z | v x z
5 2 4 syl5eq u = v w | u x w = z | v x z
6 5 fveq2d u = v g w | u x w = g z | v x z
7 6 cbvmptv u V g w | u x w = v V g z | v x z
8 rdgeq1 u V g w | u x w = v V g z | v x z rec u V g w | u x w y = rec v V g z | v x z y
9 reseq1 rec u V g w | u x w y = rec v V g z | v x z y rec u V g w | u x w y ω = rec v V g z | v x z y ω
10 7 8 9 mp2b rec u V g w | u x w y ω = rec v V g z | v x z y ω
11 10 axdclem2 z y x z ran x dom x f n ω f n x f suc n
12 11 exlimiv y z y x z ran x dom x f n ω f n x f suc n
13 12 imp y z y x z ran x dom x f n ω f n x f suc n