| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑢 𝑥 𝑤 ↔ 𝑢 𝑥 𝑧 ) ) |
| 2 |
1
|
cbvabv |
⊢ { 𝑤 ∣ 𝑢 𝑥 𝑤 } = { 𝑧 ∣ 𝑢 𝑥 𝑧 } |
| 3 |
|
breq1 |
⊢ ( 𝑢 = 𝑣 → ( 𝑢 𝑥 𝑧 ↔ 𝑣 𝑥 𝑧 ) ) |
| 4 |
3
|
abbidv |
⊢ ( 𝑢 = 𝑣 → { 𝑧 ∣ 𝑢 𝑥 𝑧 } = { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) |
| 5 |
2 4
|
eqtrid |
⊢ ( 𝑢 = 𝑣 → { 𝑤 ∣ 𝑢 𝑥 𝑤 } = { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝑢 = 𝑣 → ( 𝑔 ‘ { 𝑤 ∣ 𝑢 𝑥 𝑤 } ) = ( 𝑔 ‘ { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) ) |
| 7 |
6
|
cbvmptv |
⊢ ( 𝑢 ∈ V ↦ ( 𝑔 ‘ { 𝑤 ∣ 𝑢 𝑥 𝑤 } ) ) = ( 𝑣 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) ) |
| 8 |
|
rdgeq1 |
⊢ ( ( 𝑢 ∈ V ↦ ( 𝑔 ‘ { 𝑤 ∣ 𝑢 𝑥 𝑤 } ) ) = ( 𝑣 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) ) → rec ( ( 𝑢 ∈ V ↦ ( 𝑔 ‘ { 𝑤 ∣ 𝑢 𝑥 𝑤 } ) ) , 𝑦 ) = rec ( ( 𝑣 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) ) , 𝑦 ) ) |
| 9 |
7 8
|
ax-mp |
⊢ rec ( ( 𝑢 ∈ V ↦ ( 𝑔 ‘ { 𝑤 ∣ 𝑢 𝑥 𝑤 } ) ) , 𝑦 ) = rec ( ( 𝑣 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) ) , 𝑦 ) |
| 10 |
9
|
reseq1i |
⊢ ( rec ( ( 𝑢 ∈ V ↦ ( 𝑔 ‘ { 𝑤 ∣ 𝑢 𝑥 𝑤 } ) ) , 𝑦 ) ↾ ω ) = ( rec ( ( 𝑣 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) ) , 𝑦 ) ↾ ω ) |
| 11 |
10
|
axdclem2 |
⊢ ( ∃ 𝑧 𝑦 𝑥 𝑧 → ( ran 𝑥 ⊆ dom 𝑥 → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) ) |
| 12 |
11
|
exlimiv |
⊢ ( ∃ 𝑦 ∃ 𝑧 𝑦 𝑥 𝑧 → ( ran 𝑥 ⊆ dom 𝑥 → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) ) |
| 13 |
12
|
imp |
⊢ ( ( ∃ 𝑦 ∃ 𝑧 𝑦 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) |