| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 | ⊢ ( 𝐹  =  𝐺  →  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) )  =  ( 𝐺 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) | 
						
							| 2 | 1 | ifeq2d | ⊢ ( 𝐹  =  𝐺  →  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) )  =  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐺 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) | 
						
							| 3 | 2 | ifeq2d | ⊢ ( 𝐹  =  𝐺  →  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) )  =  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐺 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) | 
						
							| 4 | 3 | mpteq2dv | ⊢ ( 𝐹  =  𝐺  →  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  =  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐺 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 5 |  | recseq | ⊢ ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  =  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐺 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  →  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐺 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐹  =  𝐺  →  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐺 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) ) | 
						
							| 7 |  | df-rdg | ⊢ rec ( 𝐹 ,  𝐴 )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 8 |  | df-rdg | ⊢ rec ( 𝐺 ,  𝐴 )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐺 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 9 | 6 7 8 | 3eqtr4g | ⊢ ( 𝐹  =  𝐺  →  rec ( 𝐹 ,  𝐴 )  =  rec ( 𝐺 ,  𝐴 ) ) |