| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ifeq1 | ⊢ ( 𝐴  =  𝐵  →  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) )  =  if ( 𝑔  =  ∅ ,  𝐵 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) | 
						
							| 2 | 1 | mpteq2dv | ⊢ ( 𝐴  =  𝐵  →  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  =  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐵 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 3 |  | recseq | ⊢ ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  =  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐵 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  →  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐵 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐴  =  𝐵  →  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐵 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) ) | 
						
							| 5 |  | df-rdg | ⊢ rec ( 𝐹 ,  𝐴 )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 6 |  | df-rdg | ⊢ rec ( 𝐹 ,  𝐵 )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐵 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 7 | 4 5 6 | 3eqtr4g | ⊢ ( 𝐴  =  𝐵  →  rec ( 𝐹 ,  𝐴 )  =  rec ( 𝐹 ,  𝐵 ) ) |